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In this paper, pattern formation for a Schnakenberg model is studied in one 
and two dimensions. The model has been studied when the diffusion is 
nonlinear and so called cross diffusion. The conditions of diffusion driven 
instability are applied to this model and shown that this model can formulate 
patterns, and the existence of bifurcation for specific parameters are shown 
and for different values of wave number k. The use of COMSOL Multiphysics 
finite element package in simulation shows nice graphs of pattern formations 
in two dimensions. 
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1. Introduction 

*The topic that attracts a large number of 
researchers especially mathematicians is the pattern 
formation or Turing models. This connects two 
different sciences to formulate models for 
interesting topics in mathematical biology through 
the study of how structures and patterns in nature 
develop over time. The mechanism of two chemicals 
as a pattern formation is studied first using the 
reaction diffusion equations time by the scientist 
Turing (1952). A self-organized pattering when 
diffusion linear is derived for this model by Gambino 
et al. (2015). However, this isn’t the only 
phenomenon that is formulated when there is an 
interaction between reaction and diffusion, but many 
others are formulated in geology, geography, 
chemistry, industrial process, networks of electrical 
circuits and of course, mathematics. There are two 
cases of diffusion that are used in the reaction 
diffusion system to produce the pattern; the case of 
each species depends on the gradient of 
concentration itself which is called self-diffusion. The 
second case is when the gradient of the density of 
one species induces a flux of another species, and 
this is a cross diffusion. Both self- and cross- 
diffusion terms are common in the context of 
population dynamics and today appear in different 
topics like chemotaxis, ecology, social systems, 
turbulent transport in plasmas, drift- diffusion in 
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semiconductors, granular materials and cell division 
in tumor growth. The drawback point that can be 
seen in similar models in population ecology is that 
most of the papers are focused on mathematical 
properties in the reaction diffusion system and 
neglect the idea of pattern formation (Gambino et al., 
2012). There is a model in which the pattern 
formation cannot be seen in it shown in previous 
studies. This model is called Lotka-Volterra 
competition-diffusion system with constant diffusion 
coefficients. However, both of Shigesada et al. (1979) 
showed that when diffusion terms are nonlinear and 
the population densities are u and v for two 
competing species, then the formula of pattern 
formation can be constructed. The work of Gambino 
et al. (2015) was introduced the following reaction-
diffusion system (Eq. 1):  

 
𝜕𝑢

𝜕𝑡
= ∇2𝑢 + 𝑑𝑣∇2𝑣 + 𝛾𝑓(𝑢, 𝑣),  

𝜕𝑣

𝜕𝑡
= 𝑑∇2𝑢 + 𝑑𝑢∇2𝑢 + 𝛾𝑔(𝑢, 𝑣)                                           (1) 

 
where, ∇2 is the bi dimensional Laplacian operator, 𝑑 
is the ratio of the linear diffusion coefficients, 𝑑𝑢and 
𝑑𝑣 are respectively the ratios of the cross-diffusion 
and the diffusion coefficients, and 𝛾 is a positive 
constant. The nonlinear kinetics (Eq. 2) describes the 
Schnakenberg chemical reaction: 
 
𝑓(𝑢, 𝑣) = 𝑎 − 𝑢 + 𝑢2𝑣,  

g(u, v) = 𝑏 − 𝑢2𝑣.                                                 (2) 
 
Also, it is required that (1) and (2) be equipped 

with the following initial conditions: 
 

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), 𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦), (𝑥, 𝑦) ∈ [0, 𝑙𝑥] ×
[0, 𝑙𝑦]  
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where, 𝑙𝑥  and 𝑙𝑦  are characteristic lengths. The 

reaction diffusion model with nonlinear cross-
diffusion system which describes segregation effects 
for competing species in population ecology is 
known as Shigesada et al. (1979) cross-diffusion 
system. The models shown in Madzvamuse et al. 
(2015) and Rasheed (2014) stated that cross-
diffusion is responsible for Turing instability. Even 
when cross diffusion coefficients are linear or small 
or negative as studied in Vanag and Epstein (2009), 
it is sufficient to formulate pattern formation. 

Moreover, in the above mentioned papers, the 
diffusion is coupled with nonlinear kinetic terms. 
Schnakenberg model has been studied with linear 
cross diffusion to produce the pattern formation in 
Madzvamuse et al. (2015). When the cross-diffusion 
terms are absent, the need of constant diffusion 
coefficient for inhibitor to be large is necessary, 
whilst the existence of cross diffusion coefficient 
provides the diffusion constant d so that it is not 
greater than one. The proposed finite volume 
method by Andreianov et al. (2011) is used to study 
the reaction diffusion system with cross diffusion 
numerically. This model represents a two-species 
Lotka–Volterra reaction–diffusion competition plank 
tonic system, and it was shown that the cross 
diffusion driven instability and patterns will 
formulated. For more details about using numerical 
methods to solve Reaction diffusion system see 
Barrett et al. (2004), Barrio et al. (1999), and Tory et 
al. (2011). 

2. Schnakenberg model with cross diffusion 

In this section, we start discussing the conditions 
of diffusion driven instability in homogeneous cases. 
The dynamics of pattern formation occurs when the 
stability of steady state changes after we add cross 
diffusion. We consider the two species reaction-
diffusion system (Eq. 3): 

 
𝜕𝑢

𝜕𝑡
= 𝐷𝑢

𝜕2 𝑢

𝜕𝑥2 + 𝑓(𝑢, 𝑣),
∂v

𝜕𝑡
= 𝐷𝑣

𝜕2 𝑣

𝜕𝑥2 + 𝑔(𝑢, 𝑣),                   (3) 

 
with fluxes as in the following expression (Eq. 4): 
 
𝐷𝑢 = ∇[𝑢(𝑐1 + 𝑎1𝑢 + 𝑏1𝑣)],  

𝐷𝑣 = ∇[𝑣(𝑐2 + 𝑎2𝑣 + 𝑏2𝑢)].                                 (4) 
 
The reaction terms are (Eq. 5): 
 

𝑓(𝑢, 𝑣) = 𝛼 − 𝑢𝑣2, 

𝑔(𝑢, 𝑣) = 𝛽 + 𝑢𝑣2 − 𝑣.                                 (5) 
 
In (3) 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) with 𝑥 ∈ Ω, Ω ⊆ 𝑅𝑛 are 

the population densities of two interaction species. 
The parameters 𝑎𝑖 ≥ 0  and 𝑐𝑖 ≥ 0   are respectively 
the self-diffusion and the diffusion coefficients, while 
the parameters 𝑏1 and 𝑏2, the cross-diffusion 
coefficients, are both nonnegative therefore both 
species are in a competitive relationship (Gambino et 
al., 2007). Assume that the reaction term has a non-
zero homogeneous steady state(𝑢0, 𝑣0). This system 

exhibits the diffusion driven instability if the 
homogeneous steady state (𝑢0, 𝑣0) is stable to 
spatially homogeneous perturbations, but unstable 
to some non-homogeneous perturbations (Rasheed, 
2014). 

3. Linear stability analysis 

Turing reaction-diffusion models are generally 
non-linear. As such, it can be difficult to understand 
how a particular solution will develop over time and 
space. We can gain some understanding of the 
behavior of the solution by looking at one solution 
over time. We first linearize the reaction function 
about the homogeneous steady state solution. Then, 
the linear stability analysis looks at the time 
component of a particular solution to see what 
growth rates will converge to zero, producing a 
stable-state. From this, we can look at the conditions 
for which instabilities can occur. For simplicity, we 
carry out the analysis in one spatial dimension.  

The uniform stationary state solution, 
 

(u0, v0) = (
α

(α+β)2 , α + β)  

 
satisfies 

 
f(u0, v0) = g(u0,v0) = 0. 

 
The linearized system in the neighborhood of 

(u0, v0) is (Eqs. 6 and 7): 
 

ẇ = Kw + D∇2w,   w = [
u − u0

v − v0
]                                (6) 

K = [
fu fv

gu gv
],  

 
or 
 

K = [
−v0

2 −2u0v0

v0
2 2u0v0 − 1

],  

D = [
c1 + 2a1u0 + bv0 bu0

b2v0 c2 + 2a2v0 + b2u0
].                   (7) 

 
First, we show that the system (3) is stable 

without reaction terms and satisfies the two 
conditions: 

 
I: Trace(K) = fu + gv < 0, 
Trace (K) = −v0

2 + 2𝑢0𝑣0 − 1 < 0, 

−(𝛼 + 𝛽)2 + 2
𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1 < 0, 

 
II: Det(𝐾) = 𝑓𝑢𝑔𝑣 − 𝑓𝑣𝑔𝑢 > 0, 
Det (𝐾) = −𝑣0

2(2𝑢0𝑣0 − 1) − (−2𝑢0𝑣0)𝑣0
2 > 0, 

−(𝛼 + 𝛽)2 (2
𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1) − (−2

𝛼

(𝛼+𝛽)2
(𝛼 +

𝛽)) (𝛼 + 𝛽)2 > 0.  

 
Next, the stability of steady state changes after 

we add diffusion.  Looking for solutions of system (6) 
of the form 𝑊𝑘 = 𝐶𝑘𝑒𝜆𝑘𝑡𝑒𝑖𝑘𝑥 leads to the following 
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dispersion relation, which gives the eigenvalue λ as a 
function of the wave number 𝐾: 

 

𝜆𝐼 = −𝑘2𝐷 + 𝐾, where, I is an identity matrix, 
 

[
𝜆 − 𝐼 0

0 𝜆 − 𝐼
] = −𝑘2 [

𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0 𝑏𝑢0

𝑏2𝑣0 𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0
] + [

−𝑣0
2 −2𝑢0𝑣0

𝑣0
2 2𝑢0𝑣0 − 1

]  

[
𝜆 + 𝑘2(𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0) + 𝑣0

2 𝑘2𝑏𝑢0 + 2𝑢0𝑣0

𝑘2𝑏2𝑣0 − 𝑣0
2 𝜆 + 𝑘2(𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0) − (2𝑢0𝑣0 − 1)

] = 0, or 

(𝜆 + 𝑘2(𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0) + 𝑣0
2)(𝜆 + 𝑘2(𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0) − (2𝑢0𝑣0 − 1)) − (𝑘2𝑏2𝑣0 − 𝑣0

2)(𝑘2𝑏𝑢0 + 2𝑢0𝑣0) = 0  

𝜆2 + 𝑘2(𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0)𝜆 − (2𝑢0𝑣0 − 1)𝜆 + 𝑘2(𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)𝜆 + 𝑘4(𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)(𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0) −
𝑘2(𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)(2𝑢0𝑣0 − 1) + 𝑣0

2𝜆 + 𝑘2(𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0)𝑣0
2 − (2𝑢0𝑣0 − 1)𝑣0

2 − (𝑏2𝑣0𝑏𝑢0𝑘4 + 2𝑏2𝑢0𝑣0
2𝑘2 −

𝑏𝑣0
2𝑢0𝑘2 − 2𝑢0𝑣0

3) = 0  

𝜆2 + (𝑘2((𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0) + (𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)) − ((2𝑢0𝑣0 − 1) − 𝑣0
2)) 𝜆 + 𝑘4((𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)(𝑐2 + 2𝑎2𝑣0 +

𝑏2𝑢0) − 𝑏2𝑣0𝑏𝑢0) + ((𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0)𝑣0
2 − (𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)(2𝑢0𝑣0 − 1) + 2𝑏2𝑢0𝑣0

2 − 𝑏𝑣0
2𝑢0)𝑘2 + (−(2𝑢0𝑣0 − 1)𝑣0

2 −

2𝑢0𝑣0
3) = 0   

𝜆2 + (𝑘2 ((𝑐2 + 2𝑎2(𝛼 + 𝛽) + 𝑏2
𝛼

(𝛼+𝛽)2
) + (𝑐1 + 2𝑎1

𝛼

(𝛼+𝛽)2
+ 𝑏(𝛼 + 𝛽))) − ((2

𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1) − (𝛼 + 𝛽)2)) 𝜆  

+𝑘4 ((𝑐1 + 2𝑎1
𝛼

(𝛼+𝛽)2
+ 𝑏(𝛼 + 𝛽)) (𝑐2 + 2𝑎2(𝛼 + 𝛽) + 𝑏2

𝛼

(𝛼+𝛽)2
) − 𝑏2(𝛼 + 𝛽)𝑏

𝛼

(𝛼+𝛽)2
) + ((𝑐2 + 2𝑎2(𝛼 + 𝛽) +

𝑏2
𝛼

(𝛼+𝛽)2) (𝛼 + 𝛽)2 − (𝑐1 + 2𝑎1
𝛼

(𝛼+𝛽)2 + 𝑏(𝛼 + 𝛽)) (2
𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1) + 2𝑏2

𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽)2 − 𝑏(𝛼 + 𝛽)2 𝛼

(𝛼+𝛽)2) 𝑘2 +

(− (2
𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1) (𝛼 + 𝛽)2 − 2

𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽)3) = 𝜆2 + (𝑘2𝑡𝑟𝑎𝑐𝑒(𝐷) − 𝑡𝑟𝑎𝑐𝑒(𝑘))𝜆 + ℎ(𝑘2) = 0                    (8) 

 
where, 
 
ℎ(𝑘2) = 𝑑𝑒𝑡(𝐷)𝑘4 + 𝑞𝑘2 + 𝑑𝑒𝑡(𝑘) = 0                        (9) 
 
with 
 
𝑞 = (𝑐2 + 2𝑎2𝑣0 + 𝑏2𝑢0)𝑣0

2 − (𝑐1 + 2𝑎1𝑢0 + 𝑏𝑣0)(2𝑢0𝑣0 − 1) + 2𝑏2𝑢0𝑣0
2 − 𝑏𝑣0

2𝑢0                   (10) 

𝑞 = (𝑐2 + 2𝑎2(𝛼 + 𝛽) + 𝑏2
𝛼

(𝛼+𝛽)2
) (𝛼 + 𝛽)2 − (𝑐1 + 2𝑎1

𝛼

(𝛼+𝛽)2
+ 𝑏(𝛼 + 𝛽)) (2

𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽) − 1) + 2𝑏2

𝛼

(𝛼+𝛽)2
(𝛼 + 𝛽)2 −

𝑏(𝛼 + 𝛽)2 𝛼

(𝛼+𝛽)2   .  

 
In order to have 𝑅𝑒(𝜆) > 0, for some 𝑘 ≠ 0,we 

need trace(D)>0, trace(K)>0 and ℎ(𝑘2) < 0. This 
implies that, for Turing instability, the following two 
conditions must hold: 

  
𝑞 < 0, 𝑚𝑖𝑛(ℎ(𝑘2)) < 0 ⟺ 𝑞2 − 4𝑑𝑒𝑡(𝐷)𝑑𝑒𝑡(𝐾) > 0. 

 

4. Results 

Fig. 1 shows that ℎ(𝑘2) decreased to be negative 
when 𝛼 > 0.4 and this will guarantee the existence 
of Turing instability or pattern formation. When 𝛼 =
0.4, the bifurcation occurs and this parameter will 
called a bifurcation point. 

 
Fig. 1: Comparison between k and ℎ(𝑘2) for different values of parameter 𝛼 
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Fig. 2: The numerical solution using COMSOL to show the 

pattern formation dynamics in u, when 𝑡 = 10 is a type 
step and the initial condition that we use, 𝑢0(𝑥) and 𝑣0(𝑥) 

are step functions  𝑒−𝑥2
 and the parameters are 𝑎1 =

0.0004, 𝑎2 = 0.1,  𝑐𝑖 = 0.2,𝑏1 = 6.5, 𝑏2 = 0.3, 𝛼 = 0.9 
and 𝛽 = 0.1 

 
 

 
Fig. 3: The numerical solution using COMSOL for 

Shnakenberg model in (1) which shows the pattern 
formation dynamics in v, when 𝑡 = 10 is a time step and 

the initial conditions that we use, 𝑢0(𝑥) and 𝑣0(𝑥) are step 

functions of the form 𝑒−𝑥2
 and the parameters are 𝑎1 =

0.0004, 𝑎2 = 0.1, 𝑐𝑖 = 0.2, 𝑏 = 6.5, 𝑏2 = 0.3, 𝛼 = 0.9, 
and 𝛽 = 0.1 

 
 

 

 
Fig. 4: The numerical solution for Shnakenberg model in 

(1) using COMSOL which show the pattern formation 
dynamics in u, when 𝑡 = 10 is a time step and the initial 

conditions that we use, 𝑢0(𝑥) and 𝑣0(𝑥) are step functions 

of the form 𝑒−𝑥2−𝑦2
 and the parameters are 𝑎1 = 0.0004 , 

𝑎2 = 0.1, 𝑐𝑖 = 0.2, 𝑏 = 6.5, 𝑏2 = 0.3, 𝛼 = 0.9 and 𝛽 = 0.1 
 

 

 
Fig. 5: The numerical solution using COMSOL for 

Shnakenberg model in (1) which shows the pattern 
formation dynamics in 𝑣, when 𝑡 = 10 is a time step and 

the initial conditions that we use, 𝑢0(𝑥) and 𝑣0(𝑥) are step 

functions of the forms  𝑒−𝑥2−𝑦2
 and the parameters are 

𝑎1 = 0.0004,  𝑎2 = 0.1, 𝑐𝑖 = 0.2, 𝑏 = 6.5,  𝑏2 = 0.3, 𝛼 = 0.9  
and  𝛽 = 0.1 

5. Conclusion 

In this paper, we study the pattern formation for 
Schnakenberg model with cross diffusion through 
applying the conditions of diffusion driven instability 
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and we have shown that this model satisfies the four 
conditions and can formulate the patterns in two 
dimensions. Also, we found that for specific values of 
the parameter 𝛼 , the bifurcation can occur and the 
limit of the existence of patterns comparing to the 
wave number values is shown. We used the COMSOL 
multiphysics software to plot the pattern for these 
model and shown good results. 
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